1) Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).
a) $f(x, y)=x^{2}-y^{2}, x^{2}+y^{2}=1$
b) $f(x, y, z)=2 x+6 y+10 z, x^{2}+y^{2}+z^{2}=35$
c) $f(x, y, z, t)=x+y+z+t, x^{2}+y^{2}+z^{2}+t^{2}=1$
2) Find the extreme values of $f(x, y)=e^{-x y}$ on the region $x^{2}+4 y^{2} \leq 1$.
3) Find the highest point on the curve of intersection of the cone $x^{2}+y^{2}-z^{2}=0$ and the plane $x+2 z=4$. [Hint: You are trying to maximize $f(x, y, z)=z]$.
4) The sum of the length and the girth (perimeter of a cross section) of a package carried by a delivery service cannot exceed 108 inches. Find the dimensions of the rectangular package of largest volume that may be sent.
5) Use Lagrange multipliers to find the dimensions of a right circular cylinder with volume V_{0} cubic units and minimum surface area.
